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In this note we give a survey of bisection auctions. Bisection auctions have been introduced in
order to reduce the number of rounds and increase privacy of information in iterative implementa-
tions of Vickrey auctions. First, we present the case of discrete valuations. we discuss the strategic
properties of this auction and recent results which show that—for 2 bidders—the auction domi-
nates in a particular sense any other auction with respect to the number of bits revealed. For the
case of continuous valuations we contrast its properties with the result that no practical query
auction can achieve full efficiency in ex-post equilibrium.
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1. INTRODUCTION

In [Grigorieva et al. 2007], we introduced a single-item auction that is based on
binary search or bisection. Our initial goal was designing an iterative auction that
implements the Vickrey auction as an iterative auction, like the English auction,
but with a small number of rounds. Independently, [Fujishima et al. 1999] had
proposed to use bisection in single item auctions, but did not analyze the game
theoretic properties. Since then, we have published a series of papers on this auction
and related issues. The auction has been used in [Fadel and Segal 2009] as a tool
to analyze communication costs of mechanisms. And [Feigenbaum et al. 2009] have
recently studied variants of the bisection auction in terms of privacy approximation.
We want to summarize here our main findings on this auction and its offspring, the
family of c-fraction auctions. We start with the case of integer valuations, and then
explain how we adjusted the bisection auction to the continuous setting.

2. DISCRETE TYPES

In the discrete setting let us assume that private valuations are integers in the
interval [0, 2R) for some R > 1. Assume we have N bidders. The goal of the
bisection auction can be stated in two ways: (1) implement the Vickrey auction
as an iterative auction with a small number of rounds, (2) implement the Vickrey
auction by revealing as few bits of the binary encoding of the bidders valuations as
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possible. Let me first explain how the bisection auction proceeds, give an example
and finally summarize its properties.

The bisection auction has R rounds. The price sequence starts at the middle of
the initial interval with a price equal to 2R−1. (Instead of choosing the middle of
the interval one may choose any integer inside the interval. In particular, in case of
not uniformly distributed valuations one should choose the median in order to let
the analysis for the number of rounds go through.) Bidders report their demand
at the current price by sealed bids. A yes-bid stands for the announcement to be
willing to buy at the current price, a no-bid for the contrary. As a function of these
bids, the auctioneer announces the price of the next round.

In case there are at least two players submitting a yes-bid, the price goes up to
the middle of the upper half interval, i.e., the interval [2R−1, 2R). The players that
are allowed to participate actively in the next round are the ones that said yes and
they are competing for the object in the price range [2R−1, 2R). The other players
drop out of the auction and no longer have any influence on the proceedings of the
auction. In case there is at most one player saying yes, attention shifts to the lower
half interval, i.e. the interval [0, 2R−1) and the price goes down to the middle of this
interval. Two different things can happen now. First, the easy case, if no-one has
submitted a yes-bid. In that case all active players remain active in the next round.
In the other case there is a single player that submitted a yes-bid. This player now
becomes the winner and he gets the object. Nevertheless the auction doesn’t end,
but enters a price-determination phase. The active players in the next round are
the ones that were active in the previous round minus the winner. In order to keep
active players motivated to participate in the auction they should not get to know
that the object has already been assigned. Therefore we assume that bidders aren’t
able to observe bids of the others. The remaining active players are competing on
the lower half interval [0, 2R−1). The winner, although he is no longer considered
to be active, is considered to say yes to all prices that are proposed beyond the
moment he became the winner. After all, all these prices will be lower than the
price he agreed to when he became the winner. Apart from this, the way it is
decided whether the price should go up or down is not any different from the way
this is decided in the winner-determination phase. In each round depending on
submitted bids we subsequently restrict attention to either the lower half of the
current interval, or to the upper half of the current interval.

Iterating this procedure will eventually yield a winner and a price. In the case
when in no round precisely one player said yes, several players will still be active
after R rounds, and the object is assigned by a lottery to one of them. The price
is uniquely determined because in each round the length of the current interval
goes down by a factor of two. Since the initial interval is of length 2R, after R
rounds the resulting interval is of length 1. And since it is a half-open interval, it
contains exactly one integer. This integer is declared to be the price the winner of
the auction has to pay for the object.

Example. This example illustrates how the bisection auction works. Suppose
there are four bidders, A, B, C, and D, with the following integer private valuations
from the interval [0, 16): 11, 7, 15, 9. To determine the winner and the price in
this setting the bisection auction takes four rounds and starts with an ask price
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equal to 8. Suppose that each bidder chooses to respond truthfully and follows a
straightforward strategy under which he says yes if an ask price is less than or equal
to his valuation and no otherwise. Bidders are not informed about other bidders’
choices. The bisection auction proceeds as follows:

round price lower bound upper bound A B C D

1 8 0 16 yes no yes yes

2 12 8 16 no - yes no

3 10 8 12 yes - (yes) no

4 11 10 12 yes - (yes) -

Since three bidders submitted yes-bids in the first round, the price increases to
the middle of the current price and the current upper bound. So the ask price of the
second round is 12. These three bidders remain active while bidder B drops out.
Since there is only one yes-bid in the second round we have a winner and we enter
what we call the price determination phase. From now on, the winner, bidder C,
is considered to say yes. Players A and D are still active. In the third round, there
are two yes-bids so the price increases. Player D drops out. In the fourth round,
the auction terminates. Taking into account bids made during the last round we
compute the final lower and upper bounds. Since there were 2 yes-bids the upper
bound remains 12 while the lower bound becomes 11. The winner, bidder C, takes
the object and pays price 11 which is the second highest value of the bidders that
participated in this auction.

We have shown in [Grigorieva et al. 2007] that answering each query in the
bisection auction truthfully is a dominant strategy. Showing this is easy if bidding
strategies are restricted to so-called threshold strategies. In such a strategy each
bidder selects a threshold and uses this to answer the query. In the bisection
auction the highest threshold will win, and the winner will pay an amount equal to
the second highest threshold. By the usual Vickrey argument, choosing a threshold
equal to your valuation is a dominant strategy. The difficult part in the proof is
to show that one can restrict oneself to threshold strategies. This requires to show
that any strategy in the extensive form game defined by the bisection auction is
outcome equivalent to a threshold strategy.

In [Grigorieva et al. 2006a] we have analyzed the bisection auction in terms of
the expected amount of private information that is revealed. We prove, under the
assumption of uniform distribution of types, an exact recursive formula for the
number of bits of bidders’ valuations that are transferred (note that a truthful
answer to any query in the auction reveals exactly one bit). Based on the formula
we show that the average number of bits communicated is bounded by 2n+R. This
means that–except for the R bits of the second highest valuation–on average 2 bits
per bidder are revealed, independent of the size of R.

This issues the question whether one can do any better. Note that in the worst
case, any Vickrey auction has to be informed about all bits from the bidders’
valuations. Therefore, we cannot differentiate Vickrey auctions by this worst case
measure. We need a finer measure of comparison. In [Grigorieva et al. 2009] we
introduce the following measure. Take any implementation of a Vickrey auction
that iteratively queries bidders for some bit from their valuations. Then let for
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every k < N2R−1, F (A, k) be the number of instances for which some auction A
ends after at most k queries. We say that an auction A dominates an auction B
if F (A, k) ≥ F (B, k) for all k. Note that for the uniform distribution this implies
that the average number of bits communicated in A is smaller than in B. The
main result that we could achieve says that for 2 bidders, the bisection auction
dominates every other implementation of the Vickrey auction. For three bidders,
one will need to modify the bisection auction to make this true. But it remains a
conjecture whether the modified bisection auction is indeed optimal.

Recently, [Feigenbaum et al. 2009] showed that the bisection auction performs
also well with respect to a different measure of privacy preservation.

3. CONTINUOUS TYPES

Let us now assume that types are continuous from some interval [l0, u0]. Obviously
searching for the second highest valuation is now not possible anymore. Rather
we have to stop the auction at some earlier point. The modification that we have
proposed in [Grigorieva et al. 2006b] is the following.

We distinguish in each round r between a price pr and a query price qr. In the
beginning, p0 = l0 and q0 = (l0 +u0)/2. In each round r the set of active bidders is
denoted by Ar. All bidders are active, that is A0 = N . In each round r we ask all
active bidders if they are willing to pay price qr. If no bidder is willing to pay qr,
we set qr+1 = (pr + qr)/2 and ur = qr. If two or more bidders are willing to pay qr,
we set pr+1 = qr, and qr = (ur + qr)/2. If exactly one bidder is willing to pay qr,
he is the winner and pays pr. The auction stops immediately. Since this event may
never happen, we introduce a rule how the item is allocated if the auction “does not
end”. In the beginning of the auction we rank the bidders randomly, and announce
the ranking. In case the auction “does not end” the bidder with the highest rank
will win. (It turns out that in equilibrium this rule will never have to be activated,
which means that we do not have to make precise what it means that the auction
“does not end”.) In contrast to the bisection auction for discrete types, all bids are
now public, and bidders are queried by increasing rank.

It turns out that this auction has an ex-post equilibrium. Intuitively, there is
sometimes a safe bet for a bidder that has a value in [pr, qr) that lets him say yes
despite the risk that the price may increase to qr. Indeed, suppose in such a round
r all of the still active bidders who are asked before him say no. If he says yes,
two things can happen. Either nobody else after him says yes, in which case he
wins at price pr. Or, one bidder after him says yes as well. Now the price becomes
indeed higher than his valuation, but because of the ranking he can protect himself
against winning by saying no in all following rounds. In the worst case all other
active bidders will do the same. But then he will be protected by the tie breaking
rule. Since in this strategy a bidder is most of the time truthful, except for this
one occasion, we have called it the bluff strategy.

The profile of bluff strategies forms an ex-post equilibrium. But it has not only
nice game theoretic properties. Firstly, observe that the option that prices could
drop is never used. Second, the price increases rapidly. By not subdividing the
current interval into halves, but setting the query price at c(pr + qr) for some c we
can even guarantee that the probability of an inefficient allocation as well as the
ACM SIGecom Exchanges, Vol. 8, No. 1, July 2009.
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level of inefficiency becomes arbitrary small, though at the cost of slightly increasing
running time. This works for any distribution of types: we set in each round the
query price qr such that the conditional probability of a bidder having a valuation
between (pr, qr), given that his valuation is in (pr, ur), equals c.

The c-fraction auction provides a design which allows the auctioneer to trade
off inefficiency with running time. Thereby, the auction terminates always after a
finite number of rounds. In [Grigorieva et al. 2009] we show that this is in a sense
all we can hope for in an individually rational auction with an ex-post equilibrium.
Indeed, we prove that an individual rational query auction that is always computes
the efficient allocation has infinite running time with probability 1.
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