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An approximation algorithm for an optimization problem runs in polynomial time for all instances and is
guaranteed to deliver solutions with bounded optimality gap. We derive such algorithms for different

variants of capacitated location routing, an important generalization of vehicle routing where the cost of opening
the depots from which vehicles operate is taken into account. Our results originate from combining algorithms
and lower bounds for different relaxations of the original problem; along with location routing we also obtain
approximation algorithms for multidepot capacitated vehicle routing by this framework. Moreover, we extend
our results to further generalizations of both problems, including a prize-collecting variant, a group version,
and a variant where cross-docking is allowed. We finally present a computational study of our approximation
algorithm for capacitated location routing on benchmark instances and large-scale randomly generated instances.
Our study reveals that the quality of the computed solutions is much closer to optimality than the provable
approximation factor.
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1. Introduction
The broad realm of vehicle routing addresses the
omnipresent logistic challenge of minimizing the cost
of operating vehicles performing pickups and/or
deliveries of goods for clients from a given set of
depots. In many logistics applications, however, the
cost of opening these depots constitutes a second
major cost driver. Integrating this aspect of location
decisions into the model leads to an additional and
distinct optimization challenge. The two families cor-
responding to the routing and location subproblems,
namely vehicle routing and facility location, have been
studied extensively from practical as well as theoret-
ical points of view. The integrated problem of jointly
making location and routing decisions is known as
location routing and has received significant attention
in the operations research community as well.

A basic variant of location routing is the capacitated
location routing problem (CLR) defined as follows. We
are given an undirected connected graph G = 4V 1E5,
where the node set V = C ∪̇F of the graph is par-
titioned into a set of clients C and a set of facilities
F. We will use the term facilities interchangeably with
the term depots. There are cost functions c2 E → �+

on the edge set and �2 F → �+ associated with the
depots modeling opening costs. Every potential depot

maintains an unbounded fleet of vehicles, each with a
uniform capacity u> 0. Each client v ∈C has a demand
dv > 0. A feasible solution to CLR is given by a tuple
4F 1T5, where F ⊆F is a set of open depots and T is a
set of tours 8T11 0 0 0 1 Tk9 such that (1) every tour starts
at an open depot and returns to the same depot at the
end, (2) the demand of every client is served by the
tours by which it is visited, and (3) the total demand
served by a tour does not exceed u. The total cost of a
solution is defined by

∑
T∈T c4T 5+∑

w∈F �4w5, where
c4T 5=∑

e∈T ce denotes the routing cost of tour T . Note
that we may assume without loss of generality that
G is complete and the edge costs c satisfy the trian-
gle inequality: If this is not the case, we replace G by
its metric closure, i.e., introducing an edge between
each pair of vertices with the cost of a shortest path
between those vertices in the original graph. Fur-
thermore, note that this model also implicitly covers
depot-dependent fixed costs per tour; i.e., each vehi-
cle sent out from depot v incurs a cost of av ∈�+. This
can be easily modeled by adding 1

2av to the cost of all
edges incident to v because each tour originating at v
contains exactly two of these edges.

In the version of the problem described above,
a client’s demand may be split up and served by
multiple facilities, which is not always desired or
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even possible in practice. This motivates the follow-
ing terminology. A solution to CLR fulfills the single-
assignment property (cf. Nagy and Salhi 2007; Laporte,
Nobert, and Taillefer 1988) if the demand of each
client is served by exactly one facility. A solution ful-
fills the single-tour property if each client’s demand is
served by exactly one tour. Clearly, this latter prop-
erty can only be fulfilled if dv ≤ u for all v ∈C.

The special case of CLR where location decisions
have already been made (i.e., � ≡ 0) is the multidepot
capacitated vehicle routing problem (MDCVR). Note that
in the uncapacitated case (u = �), CLR and MDCVR
are equivalent: By triangle inequality, every optimal
solution to either problem can be transformed such
that each depot is visited by at most one tour (with-
out increasing cost). Hence, facility opening cost can
be modeled by adding 1

2�4v5 to c4e5 for all edges e
incident to a facility v ∈F.

Not surprisingly, CLR contains NP -hard combina-
torial optimization problems as a special case. When
there is only one facility and infinite vehicle capacity,
for instance, the problem becomes the traveling sales-
man problem. Or when demands are uniform and
match the vehicle capacity, CLR becomes the metric
uncapacitated facility location (UFL) problem because
an optimal routing corresponds to finding shortest
paths from each client to an open facility.

Because of this intrinsic hardness, an exact solution
method for most location routing problems including
CLR is very likely to perform poorly on some prob-
lem instances. Speaking more formally, its worst case
running time is likely to grow exponentially with prob-
lem size (Haimovich, Rinnoy Kan, and Stougie 1988).
In fact, even for simple variants of vehicle routing
problems, only relatively small instances are solved to
optimality; see the book by Toth and Vigo (2002) and
references therein. On the other hand, problem sizes
encountered in real-life problems have grown tremen-
dously over the past years (and are expected to grow
further); thus fast heuristics are becoming increasingly
important for solving location and vehicle routing
problems (Cordeau et al. 2002; Desrochers et al. 1988).
Although (meta-)heuristics used today deliver feasi-
ble solutions to larger instances in reasonable time,
there is usually no guaranteed bound regarding solu-
tion quality. Merely for some restricted special cases,
there are heuristics for which such bounds are known;
see Haimovich, Rinnoy Kan, and Stougie (1988).

To address this apparent dilemma regarding worst
case running time and guaranteed solution quality, we
use approximation algorithms in this paper, a solution
methodology in the intersection of mathematics, com-
puter science, and operations research. An approxi-
mation algorithm for an NP -hard combinatorial opti-
mization problem is a heuristic enjoying two desirable
properties: Its worst case running time is bounded by

a polynomial in problem size, and there are provable
a priori bounds (constant numbers in the best case) on
the worst case quality of the solution generated:

Definition 1. An algorithm ALG for a minimiza-
tion problem P is a �-approximation algorithm if it
runs in time polynomial in the input size; for every
instance I of P , we have

ALG4I5≤ � · OPT4I51

where ALG4I5 and OPT4I5 denote the objective values
of the solution returned by ALG and of an optimal
solution for I , respectively.

Although this worst case guarantee gives theoreti-
cal evidence for the reasonability of the algorithm, the
quality of solutions may be much closer to optimal-
ity in practice than the approximation factor indicates.
A standard reference containing approximation algo-
rithms for a multitude of hard optimization problems
is the book of Hochbaum (1997). Another recent and
very good reference, containing a detailed introduc-
tion to the various techniques used in the design of
approximation algorithms, is the book by Williamson
and Shmoys (2011).

Within this framework, we devise a constant fac-
tor approximation algorithm for CLR with arbitrary
demands. For MDCVR with arbitrary demands, we
obtain an improved approximation factor, which is,
to the best of our knowledge, the best constant
factor approximation algorithm for this problem to
date. Moreover, we consider three practically rele-
vant extensions of the above model. Suppose a com-
pany has the option not to serve all clients’ demands
itself but to outsource any number of transports
to clients at given customer-dependent prices. This
extended model is known as the prize-collecting capac-
itated location routing problem (PC-CLR). In the sec-
ond extension, we consider group capacitated location
routing (G-CLR) where the set of clients is partitioned
into groups C11 0 0 0 1Ck, with C =⋃k

i=1 Ci. In a feasi-
ble solution, only one client from each group needs
to be served. Applications include intermodal trans-
port networks, where goods can be transferred from
one logistics network to the next at one of several
hub locations. In the third extension, cross-docking is
allowed: We allow consolidation tours, which do not
visit a facility but contain one node where they meet
with other tours. From there, spare capacity on the
latter tours is utilized jointly to forward all demand of
the consolidation tour to facilities. Being of profound
practical interest (see, e.g., Vahdani and Zandieh 2010;
Wen et al. 2009), cross-docking operations may signif-
icantly improve capacity utilization and hence reduce
total cost. We extend our constant factor approxima-
tions to all three of these variants, where for the group
version, our approximation guarantee depends on the
cardinality of the largest group.
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1.1. Previous Results
Location routing (as the integration of vehicle rout-
ing and facility location) has occupied a central place
in the operations research literature over the past
decades. Because hundreds of papers have been pub-
lished in this broad area, we will give pointers to
textbooks and survey articles when referring to the
main streams in location routing. However, we give a
concise overview of works regarding approximation
algorithms on the subject.
Location Routing. Perhaps one of the earliest mod-

els of location routing appears in the paper by
Webb (1968). Laporte (1988) gives a comprehensive
overview of the literature prior to the late 1980s. More
recent survey articles summarizing heuristic algo-
rithms and mathematical programming formulations
for many variants of location routing can be found
in Mina, Jayaraman, and Srivastava (1998) and Nagy
and Salhi (2007). Very recently, there have been sev-
eral works on integer programming formulations for
CLR with capacitated facilities using strengthened cut
inequalities; see Belenguer et al. (2011) and Contardo,
Cordeau, and Gendron (2010).

There are only a few works that are concerned with
approximation theory for location routing problems.
For unbounded vehicle capacity, a 42 − 1/4�V � − 155-
approximation algorithm is given by Goemans and
Williamson (1995). Glicksman and Penn (2008) gener-
alize this result to the case of (uncapacitated) group
location routing, where one is given a system of
groups of clients, and only one client from each group
needs to be served. Among other results, they derive
a 42 − 1/4�V � − 155L-approximation algorithm, where
L denotes the cardinality of the largest group. Finally,
Chen and Chen (2009) provide a 24-approximation for
location routing with soft facility capacities (i.e., facil-
ities can be installed multiple times, each copy capa-
ble to serve a limited amount of demand, and vehicle
loads are still unbounded).
Vehicle Routing. When facilities can be opened at no

cost, location routing becomes the multidepot vehi-
cle routing problem, for which countless exact and
heuristic solution methods have been proposed. For
an overview of the rich literature in this field, we
refer the reader to the books edited by Toth and Vigo
(2002) and Golden and Assad (1988) and the sur-
veys of Baldacci, Toth, and Vigo (2010); Cordeau et al.
(2002, 2007); Haimovich, Rinnoy Kan, and Stougie
(1988); Laporte (2009); and Laporte and Semet (2001).
For vehicle routing problems with additional side
constraints (such as time windows, heterogeneous
fleets, fleets of limited size) see also Bräysy and
Gendreau (2005); Baldacci, Toth, and Vigo (2010); and
Desrochers et al. (1988).

There is a large body of work regarding the clas-
sical capacitated vehicle routing problem (with a

single depot) including the seminal polynomial time
approximation scheme (PTAS) of Haimovich and
Rinnoy Kan (1985) for geometric distances. Li and
Simchi-Levi (1990) consider the multidepot capaci-
tated vehicle routing problem (MDCVR) and present,
among other results, a 42+2�TSP5-approximation algo-
rithm for arbitrary, unsplittable demands, where �TSP
denotes the factor of an approximation algorithm
for the traveling salesman problem. This is the best
previously known approximation algorithm for this
version of the problem, with �TSP = 3/2 using the
algorithm by Christofides (1976). There is also a
PTAS for the case of Euclidean distances and uni-
form demands, albeit with running time exponential
in vehicle capacity as well as the number of depots
(Cardon et al. 2008).

Charikar, Khuller, and Raghavachari (2001) studied
the related k-delivery TSP in which a single vehicle
with capacity k needs to transport n (unit-sized) items
located at arbitrary locations to given demand points.
For this problem they derive a 5-approximation.
Facility Location. Approximation algorithms for met-

ric uncapacitated facility location (UFL) constitute a
central topic in combinatorial optimization. As a ref-
erence, we point the reader to the 1052-approximation
of Mahdian, Ye, and Zhang (2006). Using ideas of
Chudak and Shmoys (2003), a recent publication by
Byrka and Aardal (2010) improves this factor to 105,
also introducing a bifactor approximation that pro-
vides separate approximation ratios for connection
and opening costs with respect to an initially solved
LP relaxation.

Ravi and Sinha (2006) study the related capacitated
cable facility location problem. As in CLR, one is given
a complete undirected graph with metric costs on the
edges. A set of clients needs to be served from facil-
ities with associated opening costs. Facilities need to
be opened and clients need to be connected to open
facilities by Steiner trees, where an edge e of a tree is
associated with a number of cables bought for the cor-
responding connection, each at price c4e5. Each cable
has uniform capacity u, and each connection needs
to comprise enough cables to provide capacity no
less than the number of clients depending on it. The
authors propose a 4�UFL + �ST5-approximation algo-
rithm, where �UFL and �ST denote the approximation
factors of algorithms for UFL and Steiner tree, respec-
tively, which are used as subroutines. Their algorithm
computes a feasible solution by merging a UFL and
a Steiner tree solution. The merging procedure first
routes the entire demand along the Steiner tree and
then iteratively relieves overloaded subtrees of exces-
sive demand by rerouting it to a closest open facility
in the UFL solution.

The approximation algorithms in this paper use a
similar technique of merging two solutions (UFL and
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a minimum spanning tree) by iteratively rerouting
demand from overloaded subtrees of the spanning
tree to a closest open facility of the UFL solution.
Because our model is tour-based, however, we cannot
argue on individual link capacities or use correspond-
ing flow arguments. The merging procedure in Ravi
and Sinha (2006) crucially relies on the flexibility to
install sufficient cable capacity on individual edges
and to fractionally route flow under these capacity
constraints. In contrast, we have to decide about buy-
ing complete tours from open facilities, requiring a
different rerouting procedure.
Extended Models. In the prize-collecting (PC) ver-

sion of the above problems, a feasible solution does
not have to serve all clients. Instead, an individ-
ual penalty may be paid for each unserved client.
Thereby, PC can precisely model outsourcing deci-
sions and is hence of profound practical inter-
est. For the PC version of UFL, Jain et al. (2003)
claim to obtain a 2-approximation, improving the
3-approximation by Charikar et al. (2001) but omitting
a complete proof. We are not aware of any previous
approximation results for PC vehicle routing or PC
location routing.

In the group variant, the set of clients is partitioned
into disjoint subsets, or groups of clients, and only
one client from every group has to be served. Group
facility location is closely related to unweighted set
cover, as we shall see in §4. For the group case
of uncapacitated vehicle and location routing, the
only previous result we know of is the algorithm by
Glicksman and Penn (2008) mentioned above.

Finally, in capacitated location routing and multi-
depot capacitated vehicle routing, cross-docking may
be allowed in certain application scenarios. Here,
some clients are served by consolidation tours that
do not connect directly to a facility but meet with
other tours having spare capacity. These latter tours
jointly forward all demand required by the consolida-
tion tour to their respective facilities. Cross-docking
plays a significant role in numerous logistics appli-
cations, and some heuristic approaches have recently
been proposed for vehicle routing with cross-docking
(Vahdani and Zandieh 2010; Wen et al. 2009). This
model also exhibits strong similarity to a practically
relevant problem called mixed truck delivery, which
is studied in Liu, Li, and Chan (2003). Here, deliv-
ery tours are sought as well, and clients may be
served by tours either from facilities or from hubs,
which are in turn served by facilities. The authors
develop a heuristic solution approach and present
computational results suggesting that routing cost can
be reduced on average by around 10% for random
instances when allowing cross-docking. Our model
corresponds to the case where each client node may
also function as a hub.

1.2. Our Contribution and Structure of the Paper
In §2 we develop a framework for combining approx-
imation algorithms for facility location with spanning
or Steiner tree algorithms in order to obtain approx-
imation algorithms for capacitated location routing
and multidepot capacitated vehicle routing problems.
We apply our technique to devise a constant fac-
tor approximation algorithm for CLR with arbitrary
demands. We are not aware of any previous results
regarding constant factor approximations for CLR.
For MDCVR, we obtain an improved approxima-
tion guarantee that is, to the best of our knowledge,
the best approximation factor to date. In §§3–5 we
study the prize-collecting, group, and cross-docking
variants. We extend our approximation algorithm to
all three variants. Although we derive constant fac-
tor approximations for the prize-collecting and cross-
docking versions, the approximation guarantee for
the group version depends on the cardinality of the
largest group. In fact, we show that this version of the
problem does not allow for a constant factor approx-
imation by providing a lower bound on the achiev-
able approximation factor depending on the number
of groups. In §6 we present a computational study
of our algorithm for CLR, where we compare solu-
tion quality and running time with those of other
algorithms for CLR from the literature on benchmark
instances. It turns out that in practice, the algorithm’s
performance greatly exceeds its theoretically proven
approximation guarantee. On the benchmark test set,
the quality of our solutions is on average within a
factor of 1.1–1.2 of best known solutions. Although
the increase in cost over other algorithm is mild, our
algorithm’s running time is several magnitudes faster,
taking only negligible time on benchmark instances.
To further demonstrate this computational efficiency
we test our algorithm on a set of large-scale ran-
domly generated instances (11000–101000 customers;
100–11000 facilities per instance). We are not aware of
any previous work considering CLR instances of com-
parable size. We conclude the paper in §7 with a brief
summary and a discussion of open problems.

2. Approximation Algorithm for
Capacitated Location Routing

In this section, we present our main approxima-
tion result. After deriving two lower bounds, we
present our algorithm for CLR followed by its analy-
sis. Finally, we describe a specialization for multide-
pot capacitated vehicle routing yielding an improved
approximation guarantee.

Before we start, we introduce some additional nota-
tion. As described in the introduction, a feasible solu-
tion to CLR consists of a set of open facilities F and a
set of tours (or, in mathematical terms, closed walks)
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T such that (1) each tour visits an open facility, (2) the
demand of each client is served by the tours by which
it is visited, and (3) the demand transported by a tour
does not exceed the vehicle capacity u. The second
and third condition can be expressed by the existence
of demand assignments, i.e., nonnegative values xvT for
each v ∈C and T ∈T fulfilling (2)

∑
T∈T2 v∈V 4T 5 xvT = dv

for all v ∈ C and (3)
∑

v∈C xvT ≤ u for all T ∈ T.
Note that these demand assignments can be com-
puted efficiently from the tuple 4F 1T5 and it is thus
not important whether they are part of the formal
solution output. However, we will use them in proofs
throughout the paper.

Using this notation, we once again give a formal
definition of the basic version of the capacitated loca-
tion routing problem, which is the subject of this
section.

Problem 1 (Capacitated Location Routing).
Input: a graph G= 4C∪F1E5, metric edge costs
c2 E →�+, opening costs �2 F→�+, demands
d2 C→�+, vehicle capacity u ∈�+

Task: Find a set of facilities F ⊆F and a set of closed
walks T with a demand assignment
x2 C×T→�+ such that

(1) V 4T 5∩ F 6= � for all T ∈T,
(2)

∑
T∈T2 v∈V 4T 5 xvT = dv for all v ∈C,

(3)
∑

v∈C xvT ≤ u for all T ∈T,
minimizing the cost

∑
w∈F �4w5+∑T∈T

∑
e∈T ce.

2.1. Two Lower Bounds
We provide two lower bounds on the optimal solu-
tion, which will be used to derive a constant approx-
imation factor for our algorithm.

Lemma 1. Given an instance of CLR, consider an unca-
pacitated facility location (UFL) instance defined as fol-
lows. The sets of clients and facilities remain the same as
in CLR, but we set the costs of edges to c̃ 2= 42/u5c. Then
the cost of an optimal solution to UFL (w.r.t. c̃) is at most
the cost of an optimal solution to CLR (w.r.t. c).

Proof. Consider a feasible solution 4F 1T5 of CLR
with demand assignments xvT . Construct a solution U
of the UFL instance by opening all facilities that were
opened by CLR and connecting each client v ∈ C to
a closest open facility w4v5 ∈ F . The connection cost
of U is c̃4U 5=∑

v∈C c̃vw4v5dv. We will show that c̃4U 5≤∑
T∈T c4T 5, which proves the lemma.
Consider a flow f constructed from the CLR solu-

tion as follows. For every client v ∈ C and each tour
T serving v, partition T into two paths from the facil-
ity to the client and send xvT units of flow along
each path. Note that the amount of flow carried by
edge e ∈ E is at most u times the number of tours
containing e, and thus e is contained in at least �fe/u�

tours. Denoting the cost of f w.r.t. c̃ by c̃4f 5 we
deduce

1
2
c̃4f 5= 1

u

∑
e∈E

cefe ≤∑
e∈E

ce

⌈
fe
u

⌉
≤∑

e∈E

∑
T∈T2 e∈T

ce = ∑
T∈T

c4T 50

Note that the construction of the flow f induces
a path decomposition. Let Pv be the set of all paths
from a facility to client v ∈C used in the construction
of f and let fP be the flow value assigned to that path.
Note that

∑
P∈Pv

fP = ∑
T∈T 2xvT = 2dv because every

tour contributes two paths for every client it serves.
Furthermore, c̃4P 5≥ c̃vw4v5; i.e., the length of any of the
facility-client-paths is at least the distance to a closest
facility. Thus, we obtain

c̃4f 5 = ∑
v∈C

∑
P∈Pv

c̃4P 5fP ≥ ∑
v∈C

c̃vw4v5

∑
P∈Pv

fP

= ∑
v∈C

c̃vw4v52dv = 2c̃4U 5

showing that c̃4U 5≤∑T∈T c4T 5. �

Lemma 2. Given an instance of CLR, consider the
graph G′ = 4V ∪ 8r91E ∪ E ′5, where E ′ = 88r1w92 w ∈ F9
and define costs c′

rw = 0, c′
vw = cvw + 1

2�4w5 for all v ∈C,
w ∈ F, and c′

vw = cvw for all other 8v1w9 ∈ E. Then the
cost of a minimum spanning tree in G′ with respect to the
costs c′ is a lower bound on the cost of an optimal solution
of CLR (w.r.t. c).

Proof. Consider a feasible solution 4F 1T5 to CLR.
We will construct a spanning tree in G′ that has at
most the same cost. For every open facility w ∈ F , let
T11 0 0 0 1 Tj be an arbitrary ordering of the tours based
at w with Ti = 4w1vi

11 0 0 0 1 v
i
li
1w5, where li is the num-

ber of clients in Ti. For i = 11 0 0 0 1 j −1, replace the last
edge 8vi

li
1w9 of Ti and the first edge 8w1vi+1

1 9 of Ti+1

by the direct edge 8vi
li
1vi+1

1 9. Also remove the final
edge 8v

j

lj
1w9 of Tj . As a result, we get a walk Pw from

w to v
j

lj
along all clients that are served by w. Note

that c′4Pw5 =∑
e∈Pw c

′4e5 ≤∑j
i=1 c4Ti5+ 1

2�4w5 by trian-
gle inequality and because Pw contains only one edge
incident to w.

Now let S be the union of all Pw for w ∈ F and all
edges in E ′. Because S spans all facilities and contains
a walk from any client to a facility, it contains a span-
ning tree of G′ with cost at most c′4S5 ≤∑

T∈T c4T 5+∑
w∈F �4w5. �

2.2. Algorithm
We construct an approximate solution to CLR from an
approximate solution to the UFL instance described
in Lemma 1 and a minimum spanning tree on the
graph G′ as described in Lemma 2. Essentially, the
idea is to decompose the spanning tree into subtrees
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with demands between u/2 and u, which can then
be turned into tours by doubling edges. These tours
are serviced by facilities opened by either the span-
ning tree or the UFL solution. The cost of the result-
ing solution is bounded by the sum of twice the cost
of the spanning tree, twice the connection cost of the
UFL solution, and once the opening cost of the UFL
solution. Using the bifactor approximation algorithm
of Byrka and Aardal (2010) for UFL, we obtain a total
approximation factor of 4038 for CLR.

We now describe the algorithm in more detail. After
solving the UFL instance approximately and comput-
ing a minimum spanning tree, we open all facili-
ties that are opened in the UFL solution and also all
facilities w that are incident to an edge other than
8w1 r9 in the spanning tree S. Any client with demand
dv ≥ u is assigned to a closest open facility and served
by �dv/u� tours comprising only the assigned facility
and the client. We proceed to describe how to con-
struct tours for the remaining demands by merging
the given spanning tree on G′ with a UFL solution
to obtain a feasible solution to CLR (this will later be
referred to as the “merge phase”). For a better under-
standing, direct the spanning tree toward the root r
and denote the subtree rooted at node v by Sv with
Dv being the sum of the demands of all clients in Sv.

If z is a facility and the total demand in Sz is at
most u, we turn this subtree into a tour based at z by
doubling edges and short-cutting by triangle inequal-
ity. If the total demand in Sz exceeds u, we will relieve
this subtree by rerouting excessive demand to other
open facilities, charging the costs to the UFL solution,
until the remaining demand is at most u. This last
step resembles a technique introduced by Ravi and
Sinha (2006).

We now describe our rerouting procedure in detail.
Let v be a node in Sz such that Dv >u but Dw ≤ u for all
children w of v. Let I be the set containing all subtrees
Sw with w being a child of v and the set 8v9 itself. We
want to make sure that fewer than u units of demand
have to be routed to the parent of v in the tree and the
rest of the demand is connected with additional edges
paid for by the UFL solution. To this end, we greedily
partition I into groups I01 0 0 0 1 Ik such that the sum of
demands of all subtrees in each group Ij is at most u
but at least u/2 (unless j = 0). We keep the connection
of all trees in I0 to the node v, but we extract the trees of
all other groups from the spanning tree (including the
edges connecting them with v). For each j = 11 0 0 0 1 k,
the subtrees in group Ij together with the edges to v
form one single tree that can be turned into a tour by
doubling edges and short-cutting. Among all clients
on this tour we choose one with the cheapest connec-
tion cost to an open facility and insert this facility into
the tour, paying at most twice the cost of the corre-
sponding edge by triangle inequality. Observe that this

edge carries at least u/2 units of demand. We repeat
this procedure until the total demand in the subtree Sz
is at most u. Then we turn the remainder of Sz into a
tour, again by doubling edges.

Algorithm 1 (Algorithm for CLR).
Input: An instance of CLR.
Output: A feasible solution to CLR.
UFL phase:

˜

Apply the bifactor approximation algorithm of

and let F1 be the set of facilities opened
in the resulting UFL solution.

Tree phase:
Construct the graph G′ with edge costs c′ as

described in Lemma 2 and compute a minimum
spanning tree S.

Let F2 be the set of facilities that are incident to an
edge in S ∩E.

Large demand phase:
Open all facilities in F1 ∪ F2.
for all v ∈� with dv ≥ u do

Construct �dv/u� copies of a tour from v to a
closest open facility.

Add the tours to � and remove the corresponding
demand dv.

end
Merge phase:
for all z ∈ F2 do
while Dz > u do

Let v ∈ V �Sz� such that Dv > u but Dw ≤ u for all
children w of v.

Let I = �V �Sw�� w is a child of v�∪ ��v��.
Find a partition I = I0∪̇ · · · ∪̇Ik, such that∑

v∈Ij dv ≤ u for all j ∈ �0� � � � � k� and∑
v∈Ij dv > u/2 for all j ∈ �1� � � � � k�.

for all j ∈ �1� � � � � k� do
Find a pair �w�z′� such that w is a vertex of a

tree in Ij , z′ ∈ F1 ∪ F2 and cwz is minimal.
Construct a tour visiting all vertices of trees in
Ij and z′ by doubling wz and the edges of
all trees in Ij and short-cutting.

Add the tour to � and remove the
corresponding subtrees in Ij from S.

end
end
Construct a tour from Sz by doubling all edges

and short-cutting.
Add the tour to � .

end
Clean-up phase:
Remove all facilities from F1 ∪ F2 that are not on any

of the tours in � .
return �F1 ∪ F �2 � �

described in Lemma 1.

Byrka and Aardal (2010) with 	 = 2�38 on this
instance

 

    
Create a UFL instance with edge costs c= �2/u�c as

.
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2.3. Analysis
We analyze the algorithm presented in the previous
section to show that it is a 4038-approximation for
CLR. We start by estimating the cost of the solution
produced in the merge phase against the cost of the
spanning tree and the facility location solution.

Lemma 3. The solution to CLR constructed by Algo-
rithm 1 in the large demand and merge phases from the
spanning tree S and the UFL solution U has cost at most
2c′4S5+ 2c̃4U 5+�4U5.

Proof. Every tour constructed in the large demand
phase for a client v ∈C has cost at most 2�dv/u�cvw4v5,
where w4v5 is a closest open facility in U . This is
bounded by twice the connection cost for v in the UFL
solution as 2�dv/u�cvw4v5 ≤ 2 · 24dv/u5cvw4v5 ≤ 2c̃vw4v5dv
because dv/u≥ 1.

Consider a tour T constructed during an iteration
of the inner “for” loop of the merge phase in Algo-
rithm 1. The cost of the tour is at most twice the cost
of the edges of the corresponding subtree plus 2cwz′ .
Observe that by the choice of w and z′, the edge
8w1z′9 is at most as expensive as any other edge used
in U to connect any of the clients x on the tour to its
facility y4x5. Because the sum of the demands on the
tour is at least u/2, we obtain

∑
x∈V 4T 5

c̃xy4x5dx ≥ c̃wz′
∑

x∈V 4T 5

dx ≥ c̃wz′
u

2
= cwz′ 0

Thus, the total cost of all tours constructed in the
inner loop amounts to at most twice the connection
cost of U plus twice the costs of the corresponding
subtrees. The tours constructed in the outer loop and
the opening costs of all facilities in F2 are bounded by
twice the costs of the remaining subtrees Sz (w.r.t. c′),
and the opening costs of all facilities in F1 are �4U5. As
all subtrees are pairwise disjoint, summing everything
up yields the desired result. �

Consequently, if S is a minimum spanning tree and
U is a �-approximation to a minimum cost solution
to the UFL instance, the merge phase of Algorithm 1
returns a 42 + 2�5-approximation to CLR. Note, how-
ever, that in this analysis �4U5 is counted twice
whereas the actual solution only pays it once. We can
improve the approximation factor by using a bifac-
tor approximation algorithm for UFL of Byrka and
Aardal (2010). Given a parameter � > 10678, this algo-
rithm returns a solution whose opening cost exceeds
the opening cost of an initially computed optimal
fractional LP solution ULP by at most a factor of �
and whose connection cost exceeds the connection
cost of the fractional solution by at most 1 + 2e−� .
In this way, we obtain a solution U with 2c̃4U 5 +
�4U5≤ 241+2e−�5c̃4ULP5+��4ULP5, which is bounded

by �4c̃4ULP5 + �4ULP55 for all � ≥ 2038. Choosing � =
2038, Lemma 3 yields our main result.

Theorem 1. Algorithm 1 is a 4038-approximation algo-
rithm for CLR (Problem 1). The solution it produces fulfills
the single-assignment property. If dv ≤ u for all v ∈ C, it
furthermore fulfills the single-tour property.

On the other hand, the approximation ratio of our
algorithm improves naturally for classes of instances
that allow a better UFL approximation. One example
are graphs with Euclidean edge cost. Here, a PTAS for
UFL (Arora, Raghavan, and Rao 1998) can be applied
to obtain a 44 + �5-approximation for CLR.

2.4. Special Case: Multidepot Capacitated Vehicle
Routing

The special case of CLR, where opening facilities
does not incur cost (� ≡ 0) is the multidepot capaci-
tated vehicle routing problem (MDCVR) as considered
in Li and Simchi-Levi (1990) and Cardon et al. (2008).
By a slight modification of Algorithm 1, we obtain
an improved approximation ratio for this problem:
instead of solving the UFL instance approximately in
the UFL phase, we solve it exactly by opening all
facilities and assigning clients to facilities along short-
est client-facility paths. We thus can replace the fac-
tors incurred by the bifactor UFL-algorithm by 1 and
obtain the following result.

Theorem 2. When solving the UFL instance by short-
est path computation, Algorithm 1 is a 4-approximation
algorithm for MDCVR. The solution it produces fulfills
the single-assignment property. If dv ≤ u for all v ∈ C, it
furthermore fulfills the single-tour property.

Note that this improves the previously best known
approximation guarantee of 5 for MDCVR in Li
and Simchi-Levi (1990) yielding the single-assignment
property.

3. Prize-Collecting Location Routing
We now apply our algorithmic framework for CLR
and MDCVR to the prize-collecting (PC) variant of
these problems. In a prize-collecting setting, we can
decide for each client whether to serve it by our
solution or to pay a penalty for not serving it. Note
that prize-collecting can naturally be viewed as a
way of incorporating outsourcing decisions into an
optimization model: In this case, a customer’s penalty
corresponds to the cost of having it served by an
outside service provider. Because outsourcing is an
important option in many logistics applications, the
prize-collecting variants of CLR and MDCVR are
highly relevant in practice. Moreover, it is not hard to
see that PC-CLR and PC-MDCVR are generalizations
of CLR and MDCVR, respectively: by setting penal-
ties high enough, we can force any optimal solution
to serve all clients.
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Formally, an instance of PC-CLR comprises an
instance of CLR together with a penalty function
p2 C → �+, and a solution is now a three-tuple
4F 1T1C5, where F ⊆ F is a set of open facilities as
before; C ⊆ C is the set of clients served; and T is a
set of tours as before, except that we require only the
demands of clients in C to be served by T. The cost
of a solution to PC-CLR is

∑
T∈T c4T 5 +∑

w∈F �4w5 +∑
v∈C\C p4v5. As before, PC-MDCVR is the special case

of PC-CLR where �≡ 0.

Problem 2 (Prize-Collecting Capacitated Loca-
tion Routing).
Input: a graph G= 4C∪F1E5, metric edge costs
c2 E →�+, opening costs �2 F→�+,
demands d2 C→�+, vehicle capacity u ∈�+,
penalties p2 C→�+

Task: Find a set of facilities F ⊆F, a set of
clients C ⊆C, and a set of closed walks T with
a demand assignment x2 C ×T→�+ such that

(1) V 4T 5∩ F 6= � for all T ∈T,
(2)

∑
T∈T2 v∈V 4T 5 xvT = dv for all v ∈C,

(3)
∑

v∈C xvT ≤ u for all T ∈T,
minimizing the cost∑

w∈F �4w5+∑T∈T
∑

e∈T ce +∑v∈C\C p4v5.

3.1. Algorithm
The key challenge in solving the prize-collecting vari-
ant by our algorithm lies in the choice of C: on the one
hand, both our solution to UFL (Lemma 1) and our
spanning tree (Lemma 2) need to serve the same set of
clients in order for our rerouting procedure to work.
On the other hand, we need to ensure that the sum
of the costs of these partial solutions remains a lower
bound for the original problem. We accomplish this by
utilizing an approximation algorithm for PC-UFL and
an LP-based approximation algorithm for the prize-
collecting Steiner tree to determine two respective sets
of customers served. We then compute a solution to
PC-CLR serving exactly those customers served by
both the tree and the facility location solution.

A formal description of the algorithm is given in
Algorithm 2. We will prove that it is a 4�PC-ST +
2�PC-UFL5-approximation algorithm for PC-CLR, where
�PC-ST and �PC-UFL denote the approximation factors
of the approximation algorithms used for prize-
collecting Steiner tree (w.r.t. the undirected cut relax-
ation) and PC-UFL, respectively. Currently, the best
known approximation algorithm for PC-UFL achieves
an approximation ratio of �PC-UFL = 2 (Jain et al. 2003),
whereas for prize-collecting Steiner tree the algo-
rithm of Goemans and Williamson (1995) achieves an
approximation factor of 2 − 1/�V �, meeting the inte-
grality gap of the LP relaxation. Using these algo-
rithms results in an approximation factor of 6 for our
algorithm.

Algorithm 2 (Algorithm for PC-CLR).
Input: An instance of PC-CLR.
Output: A feasible solution to PC-CLR.
UFL phase:
Create a UFL instance as in the UFL phase of

Algorithm 1. Add p to obtain an instance
of PC-UFL.

Run an approximation algorithm for PC-UFL.
Let U be the returned UFL solution, C1 denote
the set of served clients, and F1 be the set of
opened facilities in U .

Steiner tree phase:
Construct the graph G′ as in Lemma 2.
Run an approximation algorithm for prize-collecting

Steiner tree on the instance given by G′, the
terminal set C∪ 8r9, and penalties p. Let S be the
resulting tree, C2 denote set of connected
customers, and F2 be the set of connected
facilities in the Steiner tree.

Merge phase:
Set C 2=C1 ∩C2.
Run the large demand and merge phases of

Algorithm 1 using U and S, serving only
clients in C. Let T be the resulting set of tours.

return 4F1 ∪ F21T1C5.

First note that an equivalent of Lemma 1 still holds
in a prize-collecting setting: In its proof, we con-
structed a feasible solution to a scaled instance of UFL
from any feasible solution to CLR without increasing
cost. It is easy to see that this construction adapts nat-
urally when transferring the set of clients served from
an optimal PC-CLR solution to a feasible solution to
PC-UFL: The penalties for customers not served are
exactly the same in both solutions.

To obtain the second, tree based lower bound,
we consider a prize-collecting Steiner tree instance
defined as follows. We add a root node r to the
network and connect it to all facilities; i.e., we con-
sider the graph G′ = 4V ∪ 8r91E ∪E ′5 with E ′ = 88r1w92
w ∈ F9 as constructed in Lemma 2. We then extend
the cost function c to E ′ by defining cost crw = 1

2�w

for each w ∈ F and define new penalties by setting
p′ 2= 1

2p. We let R = C ∪ 8r9 be the set of terminals.
We will use an approximation algorithm on this prize-
collecting Steiner tree instance that is based on the
following undirected cut relaxation.

min
∑

e∈E∪E′
c4e5y4e5+ ∑

N⊆C

(∑
v∈N

p′4v5
)
z4N5

4PC-STLP5 s.t.
∑

e∈�G′ 4S5
y4e5+ ∑

N⊆C2 S∩C⊆N

z4N5≥ 1

∀S ⊆ V 1 S ∩C 6= �1

y ≥ 00
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Here, �G′4S5 denotes the cut in G′ induced by the
vertex set S, i.e., the set of all edges of G′ that have one
endpoint in S and one endpoint outside of S. The intu-
ition for the LP formulation is the following: Given a
feasible solution to prize-collecting Steiner tree, define
z4N5 = 1 for the set N of clients that are not con-
nected to the Steiner tree and z4N5 = 0 for all other
sets of clients. Moreover, set y4e5 = 1 if edge e is in
the Steiner tree, and y4e5 = 0 otherwise. The inequal-
ities follow because any cut that separates a served
terminal from the root has to be crossed by at least
one edge of the tree.

Lemma 4. OPT4PC-STLP5≤ 1
2 OPT4PC-CLR5.

Proof. Let 4F 1T1C5 be an optimal solution to
PC-CLR. Construct a solution 4z̃1 ỹ5 to PC-STLP by set-
ting z̃4N ∗ 2= C\C5 = 1 and z̃4N 5 = 0 for all other N ⊆
C and ỹ48r1w95 = 1 for all w ∈ F , ỹ48r1w95 = 0 for all
w ∈ F\F , and ỹ4e5 = 1

2 �8T ∈ T2 e ∈ E4T 59�. It is easy to
observe that the constructed solution 4ỹ1 z̃5 has cost
1
2

∑
w∈F �4w5+ 1

2

∑
v∈C\C p4v5+ 1

2

∑
T∈T c4T 5.

It remains to show that 4z̃1 ỹ5 is feasible for PC-STLP.
So let S denote an arbitrary subset of V with
S ∩C 6= �. If S contains an open facility w, then
8r1w9 ∈ �G′4S5, and by definition of ỹ, the constraint
for S is fulfilled. Else if S ∩ C = �, then S contains
only unserved clients and the set 8N ⊆C2 S ∩C⊆N9
contains N ∗. Hence, by definition of z̃, the constraint
for S is satisfied as well. Finally, if S does not contain
an open facility and S ∩ C 6= �, then there is a client
v ∈C ∩S connected to an open facility outside of S by
a tour. At least two edges of this tour lie in the cut
�G′4S5; hence the constraint for S is again satisfied by
definition of ỹ. �

Theorem 3. Using the algorithm of Goemans and
Williamson (1995) in its Steiner tree phase, Algorithm 2
is a 42 + 2�PC-UFL5-approximation algorithm for PC-CLR
(Problem 2). The solution it produces fulfills the single-
assignment property. If dv ≤ u for all v ∈C, it furthermore
fulfills the single-tour property.

Proof. Because the algorithm uses the large
demand and merge phases of Algorithm 1, the claims
of the theorem regarding single-assignment and
single-tour properties follow directly from Theorem 1.

Moreover, by Lemma 3, the cost of the solution
returned in the merge phase is bounded by

2c4S5+ 2c̃4U 5+�4U5+ ∑
v∈C\C

p4v5

≤ 2c4S5+ ∑
v∈C\C1

2p′4v5+ 2c̃4U 5+�4U5+ ∑
v∈C\C2

p4v5

≤ 2 · 2 OPT4PC-STLP5+ 2�PC-UFL · OPT4PC-UFL5

≤ 42 + 2�PC-UFL5OPT1

where the second to last inequality results because
the algorithm by Goemans and Williamson (1995) is
a 2-approximation, and the last is from Lemma 4. �

Similar to §2.4, we can replace the algorithm for
PC-UFL by shortest path computations for the case
of PC-MDCVR, which solve this subproblem to opti-
mality: A client is connected to a facility if and only
if the shortest path distance to its closest facility is
no greater than its penalty. This yields an improved
approximation ratio for PC-MDCVR.

Theorem 4. For the case �≡ 0, PC-UFL can be solved
exactly by shortest path computations. Thereby, Algo-
rithm 2 becomes a 4-approximation algorithm for
PC-MDCVR. The solution it produces fulfills the single-
assignment property. If dv ≤ u for all v ∈C, it furthermore
fulfills the single-tour property.

4. Group Location Routing
We now consider a group version of location rout-
ing (G-CLR) where the set of clients is partitioned
into groups C11 0 0 0 1Ck, with C = ⋃k

i=1 Ci and only
one client from each group needs to be served. The
uncapacitated version of this problem was studied
by Glicksman and Penn (2008), who give a 42 − 1/
4�V �− 155L-approximation algorithm with L being the
cardinality of the largest group. Their idea is to solve
an LP relaxation of the problem and use the result-
ing fractional solution to decide which client is to be
served from each group. We extend this approach to
the capacitated case that is significantly more com-
plex: In the absence of vehicle capacities, facility open-
ing costs can be transferred to edges of the graph;
i.e., location routing is equivalent to multidepot vehi-
cle routing in this case. In contrast to Glicksman
and Penn (2008), our LP relaxation has to explic-
itly incorporate the facility location aspect of the
problem.

The dependence of our approximation factor on the
parameter L gives rise to the question whether there is
a constant factor approximation algorithm for G-CLR
that is independent of any parameters in the input.
At the end of this section, we answer this question
in the negative by showing that there is no o4log4k55-
approxmation algorithm for G-CLR.

Problem 3 (Group Capacitated Location
Routing).
Input: a graph G= 4C∪F1E5, metric edge costs
c2 E →�+, opening costs �2 F→�+, demands
d2 C→�+, vehicle capacity u ∈�+, a partition
C11 0 0 0 1Ck of C

Task: Find a set of facilities F ⊆F, a set of clients
C ⊆C and a set of closed walks T with a
demand assignment x2 C ×T→�+ such that
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(1) V 4T 5∩ F 6= � for all T ∈T,
(2)

∑
T∈T2 v∈V 4T 5 xvT = dv for all v ∈C,

(3)
∑

v∈C xvT ≤ u for all T ∈T,
(4) C ∩Ci 6= � for all i ∈ 811 0 0 0 1 k9,
minimizing the cost

∑
w∈F �4w5+∑T∈T

∑
e∈T ce.

4.1. LP Relaxation
In order to obtain an approximation for G-CLR, we
describe how to transform a solution of G-CLR into
a multicommodity flow variable assignment on the
arcs and vertices of a directed graph. We then prove
a set of valid inequalities fulfilled by all assignments
obtained from feasible G-CLR solutions. The LP relax-
ation resulting from these inequalities can be used to
decide on a set of representatives, one for each client
group. Replacing each group by its representative, we
obtain an instance of (nongroup) CLR, which can be
approximated by an adaption of Algorithm 1 with
the spanning tree replaced by a Steiner tree. We will
show that the resulting solution to G-CLR is a 4038L-
approximation.

Although the problem remains based on an undi-
rected graph, it is more convenient to consider its
directed equivalent in our LP relaxation: We replace
each undirected edge e by two oppositely directed
arcs a+

e and a−
e with costs c4a+

e 5 = c4a−
e 5 = c4e5 and

denote the set of all such arcs by A. We start con-
structing a multicommodity flow on the edges in A
from a given (undirected) solution of G-CLR by fix-
ing an arbitrary orientation for every tour. Let y4a5
be the number of tours using arc a ∈ A. Let Tv←w4a5
and Tv→w4a5 be the index sets of all tours that serve
client v ∈ C from facility w ∈ F with an occurrence
of arc a ∈ A on the path from w to v or, respec-
tively, from v to w. Accordingly, define variables
xv←w4a5 =∑

i∈Tv←w4a5
xvi and xv→w4a5 =∑

i∈Tv→w4a5
xvi for

all arcs, where the xvi are the demand assignments
introduced at the beginning of §2. Finally, for each
facility w ∈ F, let z4w5 = 1 if w is open and z4w5 = 0
otherwise.

The values xv←w4a5 and xv→w4a5 can be interpreted
as multicommodity flow with two commodities
v ←w and v → w for each pair v ∈ C and w ∈F,
respectively. The first commodity corresponds to
goods transported from facility w to client v; the sec-
ond commodity v → w emulates the empty truck
capacity on the tour returning from v to w. We define
the flow balance of node v ∈ V with respect to com-
modity h ∈ 8v ← w1v → w2 v ∈ C1w ∈ F9 as bh4v5 2=∑

a∈�+4v5 xh4a5−
∑

a∈�−4v5 xh4a5.
First observe that the total amount of flow on any

arc can at most be the capacity u times the number of

tours using the arc; i.e.,
∑
v∈C

∑
w∈F

4xv←w4a5+ xv→w4a55≤ uy4a5 ∀a ∈A0 (1)

Furthermore, we obtain

∑
v∈Ci

∑
w∈F

1
dv

4xv←w4a5+ xv→w4a55≤ y4a5

∀a ∈A1 i ∈ 811 0 0 0 1 k9 (2)

by observing that the left-hand side of the equation is
at most 1 per tour that is using the arc: Only one client
v in a group is served; only dv units are transported
to this client in total; and in any tour, each arc occurs
either before or after v but never both.

By construction of x, flow conservation holds for
each commodity at all nodes that neither correspond
to its facility nor to its client. Furthermore, at clients
v ∈ C, the value of any commodity v → w for some
w ∈ F leaving the client equals the value of v ← w
entering it:

bv→w4p5= 0 = bv←w4p5

∀v ∈C1 w ∈F1 p ∈ V \8v1w9 (3)

bv←w4v5= −bv→w4v5= bv→w4w5= −bv←w4w5

∀v ∈C1 w ∈F0 (4)

Moreover, as one client from every group needs to be
served, the variables fulfill

∑
v∈Ci

∑
w∈F

1
dv

bw→v4v5= 1 ∀ i ∈ 811 0 0 0 1 k90 (5)

Finally, at most dv units of flow are sent from an open
facility to client v and thus

∑
v∈Ci

1
dv

bv←w4v5≤ zw ∀w ∈F1 i ∈ 811 0 0 0 1 k90 (6)

We conclude that the value of an optimal solution
to the group location routing problem is at least the
value of an optimal solution of the following LP.

min
∑
a∈A

c4a5y4a5+ ∑
w∈F

�wzw

4G-CLRLP5 s.t. x1y1z fulfill (1)–(6)1

x1y1z≥ 00

Let 4x∗1y∗1 z∗5 be an optimal solution to G-CLRLP.
For i ∈ 811 0 0 0 1 k9, let ri ∈ Ci be a client with∑

w∈F b∗
v←w/dv maximum over all v ∈ Ci. We now

define the set of group representatives as R 2=
8r11 0 0 0 1 rk9. The following inequality will be useful for
deriving lower bounds on OPT4G-CLRLP5.
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Lemma 5. Let L 2= max8�Ci�2 i ∈ 811 0 0 0 1 k99. Then L ·∑
w∈F b∗

ri←w ≥ dri for all i ∈ 811 0 0 0 1 k9.

Proof. By (5), in each group Ci, there has to be at
least one client v ∈ Ci with

∑
w∈F b∗

v←w/dv ≥ 1/L, and
thus this inequality holds for ri in particular. �

Now denote the instance of (nongroup) CLR
defined by the set of representatives R by CLR(R).
Consider the following LP relaxation for the uncapac-
itated facility location problem arising from CLR(R)
as described in Lemma 1. We will use it to derive a
lower bound on the value of an optimal solution to
G-CLRLP.

min
∑
v∈R

∑
w∈F

c̃vwxvw + ∑
w∈F

�wzw

4UFLLP4R55 s.t.
∑
w∈F

xvw ≥ dv ∀v ∈R

1
dv

xvw ≤ zw ∀v ∈R1 w ∈F

x1z≥ 0

Lemma 6. OPT4UFLLP4R55≤ L · OPT4G-CLRLP5.

Proof. Consider the solution 4x̃1 z̃5 to UFLLP4R5
obtained by setting z̃w = L · z∗

w and x̃vw = L · b∗
v←w4w5

for all v ∈R, w ∈F. Observe that by Lemma 5, we
have for each representative ri

∑
w∈F

x̃riw = L · ∑
w∈F

b∗
ri←w4ri5≥ dri 0

Together with (6), this immediately implies that 4x̃1 z̃5
is a feasible solution to UFLLP. The flow of each com-
modity v ←w (v →w) can be decomposed into flow
on v-w paths (w-v paths), each of which has at length
at least cvw by triangle inequality. Combining this with
(1), we obtain

∑
a∈A

c4a5y∗4a5 ≥ ∑
a∈A

ca
u

∑
v∈C

∑
w∈F

4x∗
v←w4a5+ x∗

v→w4a55

≥ ∑
v∈C

∑
w∈F

2
u
cvwb

∗
v←w4v5

≥ 1
L

·∑
v∈R

∑
w∈F

2
u
cvwx̃vw = 1

L
·∑
v∈R

∑
w∈F

c̃vwx̃vw0

Furthermore, L ·∑w∈F�wz
∗
w=∑w∈F�wz̃w by construc-

tion, which implies

OPT4UFLLP5≤ L · OPT4G-CLRLP50 �

A second lower bound can be obtained from the LP
relaxation of a Steiner tree instance defined similar to
that in §3. Again, we consider the graph G′ = 4V ∪ 8r9,
E ∪E ′5 with E ′ = 88r1w9: w ∈F9 as constructed in
Lemma 2. We then extend the cost function c to E ′

by defining cost crw = 1
2�w for each w ∈ F. We now

consider the undirected cut relaxation of the Steiner
tree instance on G′ with terminals R∪ 8r9.

min
∑

e∈E∪E′
c4e5y4e5

4STLP4R55 s.t.
∑

e∈�G′ 4S5
y4e5≥ 1 ∀S ⊆ V 1 S ∩R 6= �1

y ≥ 00

Lemma 7. OPT4STLP4R55≤ 1
2L · OPT4G-CLRLP5.

Proof. Consider the solution ỹ to STLP4R5 obtained
by setting ỹ48v1w95 = 1

2L · 4y∗4vw5 + y∗4wv55 for all
v1w ∈ V and ỹ48r1w95= L · z∗

w for all w ∈F. Let S ⊆ V
with ri ∈ S for some i ∈ 811 0 0 0 k9. By flow conservation
and (6) we obtain

∑
a∈�+4S5

x∗
ri→w4a5+

∑
w∈S

drizw ≥ b∗
ri→w4ri5 and

∑
a∈�−4S5

x∗
ri←w4a5+

∑
w∈S

driz
∗
w ≥ b∗

ri→w4ri51

where �+4S5 = 8vw ∈ A2 v ∈ S1w ∈ V \S9 and �−4S5 =
8vw ∈ A2 v ∈ V \S1w ∈ S9. By construction of ỹ and
inequality (2) we obtain

∑
e∈�G′ 4S5

ỹ4e5

= 1
2
L

( ∑
a∈�+4S5

y∗4a5+ ∑
a∈�−4S5

y∗4a5
)

+∑
w∈S

z∗
w

≥ L

2dri

( ∑
a∈�+4S5

x∗
ri→w4a5+

∑
a∈�−4S5

x∗
ri←w4a5+ 2 ·∑

w∈S
driz

∗
w

)

≥ L

dri
· b∗

ri→w4ri50

The last expression is at least 1 by Lemma 5. Thus,
ỹ is a feasible solution to STLP4R5 with

∑
e∈E∪E′

c4e5ỹ4e5 = 1
2L

(∑
a∈A

c4a5y∗4a5+ ∑
w∈F

�w

)

= 1
2L · OPT4G-CLRLP50 �

Remark 1. The LP relaxation presented in this sec-
tion also yields an alternative proof of the minimum
spanning tree lower bound in Lemma 2 for the non-
group case, using the bidirected cut formulation of
the spanning tree polytope. However, the direct and
combinatorial proof of Lemma 2 given in §2.1 appears
to be more intuitive and elegant.

4.2. Algorithm
Lemmas 6 and 7 immediately lead to a 4038L-approx-
imation algorithm for G-CLR: Compute an optimal
solution to G-CLRLP; obtain a set of representatives R
from this solution; and compute an approximation to
the resulting instance CLR(R) with Algorithm 1, using
an LP-based Steiner tree 2-approximation algorithm
instead of a minimum spanning tree computation.
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Algorithm 3 (Algorithm for GCLR).
Input: An instance of G-CLR.
Output: A feasible solution to G-CLR.
Compute an optimal solution �x∗�y∗� z∗� to G-CLRLP.
for all i ∈ �1� � � � � k� do

Let ri ∈�i be a client with
∑

w∈� b∗v←w/dv maximum
over all v ∈�i.

R=R∪ �ri�
end
Construct the graph G′ with extended edge costs
crw = 1

2�w for w ∈� .
Apply the algorithm of Goemans and Williamson to

obtain a Steiner tree S with terminal
set R∪ �r� in G′.

Apply Algorithm 1 on the instance CLR(R) with the
minimum spanning tree computed in the tree
phase replaced by the Steiner tree S.
Return the computed solution.

Theorem 5. Algorithm 3 is a 4038L-approximation for
G-CLR (Problem 3). There is a 4L-approximation for
G-MDCVR.

Proof. The cost of the Steiner tree computed by
the algorithm of Goemans and Williamson (1995) is
at most 2 · OPT4STLP4R55. The UFL solution U com-
puted in Algorithm 1 approximates the opening cost
of an optimal solution to UFLLP4R5 by �, and its
connection cost by 41 + 2e−�5, because the LP relax-
ation is equivalent to the one used in the algorithm
of Byrka and Aardal (2010). Thus, Lemmas 6 and 7
yield 2c4S5 + 2c̃4U 5 + �4U5 ≤ 2 · OPT4STLP4R55 + � ·
OPT4UFLLP4R55≤ 4038L · OPT4GCLR5. �

4.3. Lower Bound on the Approximability
Observing that the approximation guarantee of Algo-
rithm 3 depends on the cardinality of the largest
group, it is natural to ask whether the group version of
CLR is indeed considerably harder than the standard
version or whether there is a constant factor approx-
imation whose performance is independent of any
instance parameters. We answer this question nega-
tively by showing that there is no approximation algo-
rithm for G-CLR with a factor better than O4log4k55.

In fact, the inapproximability result already holds
for the special case of G-CLR with unit demands and
unit capacity, which corresponds to the group ver-
sion of metric uncapacitated facility location (G-UFL),
as well as for the uncapacitated case considered in
Glicksman and Penn (2008). It is derived by a straight-
forward reduction from unweighted set cover.

Proposition 1. There exists a constant � > 0 such
that there is no � log4k5-approximation for G-UFL unless
P =NP .

Proof. We reduce the unweighted set cover prob-
lem, for which the same log4n5-approximability-
threshold has been proven by Feige (1998), to G-UFL.

An instance of unweighted set cover consists of a
ground set H and a set system S ⊆ 2H together with
costs cS for every S ∈S. The task is to choose a subset
S′ of S such that every element of the ground set is
covered, i.e.,

⋃
S∈S′ S = H , while minimizing the total

cost
∑

S∈S′ cS .
We create a G-UFL instance by introducing a facil-

ity wS for each S ∈ S and setting �4wS5 2= cS . For
every h ∈H and every S ∈S with h ∈ S we introduce
a client vhS . We also introduce a client group Ch for
each element h ∈ H of the ground set and let it con-
tain all clients vhS . Finally, we set cwS1vhS′ = 0 whenever
S = S ′ and to � otherwise.

Note that any feasible solution to this G-UFL
instance with finite costs corresponds to a feasible
solution to set cover with the same costs by selecting
the sets corresponding to open facilities. Because for
every client group there is an open facility with con-
nection cost zero to one of its members, every set is
covered. Likewise, every feasible solution to set cover
induces a solution to G-UFL by opening the facilities
corresponding to the chosen sets. Because every ele-
ment of the ground set is covered, for every client
group there is a member that has connection cost
zero to an open facility. Thus, any �-approximation
for G-UFL (or the group version of UFL) immedi-
ately implies a �-approximation for set cover. Choos-
ing the same � as used in Feige (1998) for set cover,
we conclude that there is no � log4k5-approximation
for G-UFL (unless P =NP ) because this would imply
a � log4�H �5-approximation for set cover (note that �H �
is the number of groups in the constructed G-UFL
instance). �

Corollary 1. There exists a constant �> 0 such that
there is no � log4k5-approximation for G-CLR (even if
u= �), unless P =NP .

Proof. Because G-UFL is a special case of G-CLR,
the inapproximability also holds for the latter. The
reduction also works if u = � because connection
costs are either 0 or �, so serving all clients at a facil-
ity on one tour instead of serving them separately
does not change the costs. �

5. Location Routing with
Cross-Docking

A major tradeoff in classic vehicle routing applica-
tions is good capacity utilization versus low cost of
each tour conducted. Especially in applications where
clients with small demands are located far away from
facilities, significant cost savings can be realized by
allowing consolidation tours. In such a tour, a vehicle
is positioned at a client node to collect goods from
other vehicles passing through. Then it starts on its
own tour to distribute the goods collected. Essentially,
the demand of a tour of clients is consolidated at
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2 1
1

2

1

2 1
2

Instance network Solution 1, without
cross-docking

Solution 2, with
cross-docking

Figure 1 A CLR Instance with u= 5
Notes. The numbers on the edges indicate the edge costs. The demand at
the central client is 1, the demand at the other clients is 3. The optimal rout-
ing scheme in Solution 1 without cross-docking has total cost 12. The rout-
ing scheme in Solution 2 uses cross-docking to consolidate the tours at the
central vertex. Its total cost is 10.

one node and forwarded to facilities via other tours
from there. The necessitated process of loading goods
from one vehicle to another at a client node is com-
monly referred to as cross-docking. The example in Fig-
ure 1 shows that cross-docking may indeed lead to
cost savings.

Formally, a solution with cross-docking to CLR is
again a tuple 4F 1T5, where F ⊆ F is a set of open
facilities and T is a set of tours, but T = TF ∪̇TH
is now partitioned into a set of facility tours TF and
a set of consolidation tours TH. We now require that
(1a) every facility tour visits an open facility; (1b) in
every consolidation tour T ∈ TH, exactly one client
h ∈ V 4T 5 is designated as the hub consolidating the
hub-demand dh

T 2= ∑
v∈C xvT of all clients served by

the tour; (2) the demand of every client (including
the additional demand occurring if the client is the
hub of one or more consolidation tours) is served
by the tours by which it is visited; and (3) the
demand served by a tour does not exceed u. More
precisely, there are nonnegative values xvT such that∑

T∈TF2 v∈V 4T 5 xvT = dv +∑
T∈TH2 v=hT

dh
T for all v ∈ C and∑

v∈C xvT ≤ u for all T ∈T. We say that a solution ful-
fills the single-vehicle-to-client property if each client’s
demand arrives on a single vehicle, which can be
important in practice. Note that in contrast to the
single-tour property, single-vehicle-to-client deliver-
ies still can be split up on earlier segments of the
transportation route or even originate from distinct
facilities.

Problem 4 (Capacitated Location Routing with
Cross-Docking).
Input: a graph G= 4C∪F1E5, metric edge costs
c2 E →�+, opening costs �2 F→�+,
demands d2 C→�+, vehicle capacity u ∈�+

Task: Find a set of facilities F ⊆F and a set of closed
walks T partitioned into facility tours TF and
consolidation tours TH, with a demand assignment
x2 C×T→�+ such that

(1a) V 4T 5∩ F 6= � for all T ∈TF,
(1b) each consolidation tour T ∈TH has a

dedicated hub hT ∈ V 4T 5,

(2)
∑

T∈TF2 v∈V 4T 5 xvT = dv +∑T∈TH2 v=hT

∑
v∈C xvT

for all v ∈C,
(3)

∑
v∈C xvT ≤ u for all T ∈T,

minimizing the cost
∑

w∈F �4w5+∑T∈T
∑

e∈T ce.

5.1. Algorithm
We now describe how to adapt Algorithm 1 in order
to allow for cross-docking. As before, we start by
computing a solution to a UFL instance as defined
in Lemma 1 and a minimum spanning tree for the
modified graph G′ as defined in Lemma 2. Then we
modify our rerouting procedure as stated formally in
Algorithm 4.

Algorithm 4 (Algorithm for CLR with cross-docking).
Input: An instance of CLR.
Output: A feasible solution to CLR with

cross-docking.
UFL phase:
Create an UFL instance with edge costs c̃= �2/u�c

as described in Lemma 1.
Apply the 1.5-approximation algorithm of Byrka and

F1 be the set

Run tree and large demand phase of Algorithm 1.
Merge phase:
for all z ∈ F2 do
while Dz > u do

Let v ∈ V �Sz� such that Dv > u but Dw ≤ u
for all children w of v.

Let I = �V �Sw�� w is a child of v�∪ ��v��.
For every R ∈ I find a pair (vR�zR) such that

vR ∈ V �R� and zR ∈ F1 ∪ F2 and cvRzR is minimal.
Order the sets in I non-decreasingly by cvRzR

and include the first �Dv/u� sets in It .
Let Is �= I\It .

for all R ∈ It do
Construct a tour visiting zR, v and all vertices

in R by adding vRzR to the tree and then
doubling edges and short-cutting.

Add the tour to � F and remove the subtrees
corresponding to the elements of R from S.

end
for all R ∈ Is do

Construct a tour visiting v and all vertices
in R by doubling edges and short-cutting.

Add the tour to � H with hub v and remove
the subtrees corresponding to the elements
of R from S.

end
end
Construct a tour from Sz by doubling all edges

and short-cutting.
Add the tour to � F .

end
Run clean-up phase of Algorithm 1.

Aardal (2010) on this instance and let
of facilities opened in the resulting UFL solution.
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As in §2.2, we consider a node v with Dv > u but
Dw ≤ u for all children w of v and let I be the set
containing all subtrees Sw, with w being a child of v,
and 8v9 itself. For each of these sets R ∈ I , we deter-
mine a node vR with cheapest connection cost cvRzR
to an open facility zR. We order the sets R ∈ I nonde-
creasingly by cvRzR and define the set of sink trees It as
the first �Dv/u� elements of I . The remaining elements
I\It make up the set of source trees Is . Each sink tree
R ∈ It is turned into a facility tour by doubling edges
and inserting the open facility closest to vR, paying
at most twice the tree edges plus the connection cost
of vR to its facility. Each source tree is turned into a
consolidation tour with hub v by doubling the edges
and short-cutting.

Note that by this construction, each facility tour vis-
its v. Hence, any spare capacity on a facility tour can
be filled by hub demands ensuing at v from consol-
idation tours. Furthermore, the sum of all demands
that cannot be served by the facility tours constructed
is strictly less than u.

5.2. Analysis
We first point out that our lower bounds from §2.1
remain valid when allowing cross-docking. These
results can easily be obtained by slight modification
of the corresponding proofs of Lemmas 1 and 2,
respectively.

Lemma 8. Consider a UFL instance as defined in
Lemma 1. The cost of its optimal solution (w.r.t. c̃) is at
most the cost of an optimal solution to CLR with cross-
docking (w.r.t. c).

Proof. Consider an optimal solution 4F 1T5 of CLR
with cross-docking and demand assignments xvT . As
in the proof of Lemma 1, we can construct a flow f
from the CLR solution as follows. For every client v ∈
C and each tour T ∈T serving v, partition T into two
paths from the facility or hub of the tour to the client
and send xvT units of flow along either path. Because
flow is sent along two paths for every client/tour pair
and all hub demand is forwarded along further tours
to facilities, the net flow transported to any client v ∈
C equals 2dv. We can thus apply flow decomposition
on f to obtain a set of client-facility paths PP and
cycles PC , respectively, with corresponding flow val-
ues fP for every P ∈ PP ∪ PC . On this flow decom-
position, we can apply the same arguments as in the
proof of Lemma 1. �

Lemma 9. The cost of a minimum spanning tree in the
graph G′ w.r.t. costs c′ as defined in Lemma 2 is a lower
bound on the cost of an optimal solution to CLR with cross-
docking (w.r.t. c).

Proof. Let 4F 1T5 be a feasible solution to CLR with
cross-docking. Note that S =⋃

T∈T T ∪E ′ spans all ver-
tices of the graph G′ because for every client there is

a path from a facility to this client along edges used
in the tours. We can modify S such that it spans the
graph G′ but every facility opened in the CLR solu-
tion is incident to at most one edge in E by applying
the technique from the proof of Lemma 2 on the set
of facility tours. This set contains a spanning tree of
cost at most the cost of the CLR solution. �

It turns out that guaranteeing demand u on each
of the tours constructed in the rerouting procedure
yields an improved approximation guarantee for the
merge phase of our algorithm.

Lemma 10. The merge phase of Algorithm 4 constructs
a solution to CLR with cross-docking with cost at most
2c′4S5 + c̃4U 5 + �4U5 from the spanning tree S and the
UFL solution U .

Proof. Observe that each facility tour constructed
in the inner loop serves a total demand of u. Thus,
the central inequality in the proof Lemma 3 changes
to
∑

x∈V 4T 5 c̃xy4x5dx ≥ 2cwz′ . Accordingly, the connection
cost of the UFL solution is paid only once. �

Intuitively, the improved bound in Lemma 10 arises
from the tight capacity utilization of vehicles that are
paid for by the UFL solution. We immediately obtain
a better approximation guarantee for Algorithm 4
when using the 105-approximation of Byrka and
Aardal (2010) for constructing the UFL solution U .

Theorem 6. Algorithm 4 is a 305-approximation algo-
rithm for CLR with cross-docking (Problem 4). If dv ≤ u
for all v ∈ C, the obtained solution satisfies the single-
vehicle-to-client property.

Again, in the case of MDCVR with � ≡ 0, we can
apply shortest path computations to solve the UFL
instance exactly.

Theorem 7. When solving the UFL instance by short-
est path computation, Algorithm 4 is a 3-approximation
algorithm for MDCVR with cross-docking. If dv ≤ u for
all v ∈C, the obtained solution satisfies the single-vehicle-
to-client property.

We remark that although Algorithm 1 produces
a solution without cross-docking, its approximation
factor still holds for the case where cross-docking
is allowed as all lower bounds used in Theorem 1
remain valid. Thus, we obtain the following bounds
on the improvements realizable by cross-docking in
CLR and MDCVR.

Corollary 2. 1. Algorithm 1 is a 4038-approximation
for CLR with cross-docking and a 4-approximation for
MDCVR with cross-docking. The produced solution fulfills
the single-assignment property. If dv ≤ u for all v ∈ C, it
fulfills the single-tour property.

2. The value of an optimal solution for CLR without
cross-docking is at most 4038 times the value of a solution
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with cross-docking. The value of an optimal solution for
MDCVR without cross-docking is at most 4 times the
value of a solution with cross-docking.

We close this section by observing that the valid-
ity of the lower bounds extend to the cases of prize-
collecting as well as group location routing with
cross-docking. We can thus combine the merge phase
of Algorithm 4 with the modifications introduced in
Algorithm 2 for PC-CLR and Algorithm 3 for G-CLR,
respectively.

Theorem 8. There is a 42 + �PC-UFL5-approximation
algorithm for PC-CLR with cross-docking. There is a
3-approximation algorithm for PC-MDCVR with cross-
docking.

Theorem 9. There is a 305L-approximation algorithm
for G-CLR with cross-docking. There is a 3L-approxima-
tion algorithm for G-MDCVR with cross-docking.

6. Computational Study
In §2, we have proven that our polynomial time algo-
rithm for CLR is guaranteed to compute solutions
that are at most 4038 times as expensive as the opti-
mum. In this section, we shall see that the algorithm’s
performance in practice exceeds this theoretical worst
case estimate by far. We would like to emphasize
that we do not expect our algorithm to compete with
(meta-)heuristic approaches without an approxima-
tion guarantee. Rather, the question addressed in this
computational study is how much solution quality on
typical instances needs to be sacrificed in exchange
for polynomial running time and a worst case perfor-
mance guarantee across all instances.

For our experiments, we implemented Algorithm 1
with the following minor modifications: First, instead
of using the bifactor approximation algorithm of
Byrka and Aardal (2010) in the UFL phase, we imple-
mented the greedy approximation algorithm of Jain
et al. (2003). Although the latter has a slightly worse
approximation guarantee of 10861, it is purely combi-
natorial, avoiding randomization and linear program-
ming, and far easier to implement. In this context,
note that although the instances in our study are
equipped with Euclidian distances, we do not apply
the PTAS of Arora, Raghavan, and Rao (1998) because
it is not tailored for practical use in regards of running
time. Moreover, before applying Prim’s algorithm (see
e.g., Cormen et al. 2001) in the tree phase, we set
the opening costs of all facilities opened in the UFL
phase to zero; doing so turns out to yield slightly
improved results, although it does not interfere with
our theoretical analysis of the algorithm. Finally, once
the algorithm has computed all tours, we added
an option to improve each single tour by solving
the corresponding traveling salesman problem (TSP)

using LKH, an implementation of the Lin-Kernighan
heuristic is described in Helsgaun (2000).

Fact 10. Our implementation of Algorithm 1 has an
approximation guarantee of 50722.

Fact 11. The running time of our implementation of
Algorithm 1 is O4n2m5, where n and m denote the number
of clients and facilities, respectively.

Fact 10 results directly from Lemma 3 and the
approximation factor of the greedy algorithm used in
the UFL phase. The running time of the implementa-
tion is dominated by that of the UFL phase; cf. Jain
et al. (2003). Moreover, experiments in Helsgaun
(2000) indicate that the practical running time of LKH
is quite low (close to quadratic). Our study supports
this observation because the additional running time
when employing the option for a posteriori tour opti-
mization by LKH turns out to be small, immeasurable
on moderately sized instances.

We report results for two different sets of instances:
The first, referred to as the benchmark set, comprises
45 instances appearing frequently in the location rout-
ing literature; see the references appearing below.
Here, we compare our results with those obtained
by recent (meta-)heuristic algorithms as well as best
known solutions (bks) from the literature. Although
the benchmark instances are moderate in size (20–200
clients, 5–20 facilities), our second test set consists of
27 randomly generated instances that are consider-
ably larger (up to 10,000 clients and 1,000 facilities).
Our implementation was done in C++ using GCC 4.5
under SUSE Linux 11.3, and all computations were
conducted on an Intel Core 2 Duo E8400 processor at
3 GHz with 4 GB RAM.

6.1. Benchmark Instances
Key properties of the benchmark instances used are
listed in Table 1. The first 36 instances were intro-
duced in Tuzun and Burke (1999), the last nine in
Barreto et al. (2007); we will refer to them as sets TB
and B, respectively. Whereas set TB is adopted as is,
our set B contains only those instances introduced in
Barreto et al. (2007) that do not have a capacity limit
on facilities because only those mirror the location
routing problem addressed here.

The best known solution values reported for TB
were obtained in Prins et al. (2007). For B, some
proven optima were already reported in Barreto
et al. (2007), whereas the remaining instances were
solved to proven optimality in Baldacci, Mingozzi,
and Wolfer-Calvo (2009), as reported in Contardo,
Cordeau, and Gendron (2010).

Table 2 contains gaps to bks and CPU times for
our implementation of Algorithm 1, with and with-
out a posteriori optimization of tours using LKH,
compared to those of four other algorithms for
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Table 1 Properties of Benchmark Instances and Cost of a Best Known
Solution (bks)

Vehicle
Name #facilities #clients � demand capacity bks value

111112 10 100 15017 150 11468040
111122 20 100 15000 150 11449020
111212 10 100 14039 150 11396046
111222 20 100 15019 150 11432029
112112 10 100 15028 150 11167053
112122 20 100 14032 150 11102070
112212 10 100 15006 150 793097
112222 20 100 14073 150 728030
113112 10 100 14081 150 11238049
113122 20 100 15010 150 11246034
113212 10 100 14073 150 902038
113222 20 100 14078 150 11021031
121112 10 200 14095 150 21281078
121122 20 200 15015 150 21185055
121212 10 200 14081 150 21234078
121222 20 200 14094 150 21259052
122112 10 200 15024 150 21101090
122122 20 200 14047 150 11709056
122212 10 200 14069 150 11467054
122222 20 200 15021 150 11084078
123112 10 200 15013 150 11973028
123122 20 200 14066 150 11957023
123212 10 200 15009 150 11771006
123222 20 200 15029 150 11393062
131112 10 150 14079 150 11866075
131122 20 150 14093 150 11841086
131212 10 150 15002 150 11981037
131222 20 150 14071 150 11809025
132112 10 150 14095 150 11448027
132122 20 150 14075 150 11444025
132212 10 150 14091 150 11206073
132222 20 150 15015 150 931094
133112 10 150 14095 150 11699092
133122 20 150 14093 150 11401082
133212 10 150 15018 150 11199051
133222 20 150 14091 150 11152086
Chr69-100 × 10 10 100 14058 200 842090∗

Chr69-50 × 5 5 50 15054 160 565060∗

Chr69-75 × 10 10 75 18019 160 861060∗

Gas67-22 × 5 5 22 463014 41500 585011∗

Gas67-29 × 5 5 29 439066 41500 512010∗

Gas67-32 × 5 5 32 917081 81000 562020∗

Gas67-32 × 5-2 5 32 917081 111000 504030∗

Gas67-36 × 5 5 36 25000 250 460040∗

Min92-27 × 5 5 27 311048 21500 31062000∗

Note. The bks values for the first 36 instances are from Prins et al. (2007);
those for the last nine, from a series of papers by Baldacci, Mingozzi, and
Wolfer-Calvo (2009); Barreto et al. (2007); Tuzun and Burke (1999).

∗Denotes proven optimality.

CLR: a greedy randomized adaptive search procedure
(GRASP) proposed in Prins, Prodhon, and Calvo
(2006); a Lagrangean relaxation granular tabu search
(LRGTS) developed in Prins et al. (2007); a two-
phase tabu search (TS) studied in Tuzun and Burke
(1999); and finally an exact branch-and-cut-and-price
approach (BCP) proposed in Baldacci, Mingozzi, and
Wolfer-Calvo (2009). Results for algorithms GRASP
and LRGTS are stated in Prins et al. (2007) for all 45

benchmark instances, whereas results for TS and BPS
are only available in the corresponding works for the
instances in TB and B, respectively.

Please note that our algorithms, GRASP and
LRGTS, TS, and BCP, were tested on different
machines, so the CPU times stated should not be com-
pared directly. Because all tests were performed on
modern desktop computers, however, we do believe
that a comparison of the magnitudes of running times
remains feasible.

On average, our approximation algorithm delivers
solutions with cost about 19% above the bks value.
This figure improves to 10% when LKH is used to
optimize tours a posteriori. Moreover, the running
time of our algorithm is negligible on these instances,
regardless of whether LKH is used or not. In compar-
ison, the (meta-)heuristic algorithms GRASP, LRGTS,
and TS compute solutions with objective 1–4% above
that of bks on average, and their running times vary
strongly from 1–7 seconds (TS) to up to 7 minutes
(GRASP). The exact approach (BCP) is able to find
optimal solutions for all instances in B, and its run-
ning time is naturally very high (up to several hours).

Because gaps to bks for GRASP and LRGTS are
no greater for the instances in TB than for those
in B, where optimality has been proven, it seems
reasonable to assume that the gap between bks
and an optimum solution is generally small. In this
case, our algorithm vastly outperforms its theoretical
approximation guarantee of 50722. When employing
a simple post-optimization step using LKH, it yields
solutions within a factor of 1025 of bks on all instances,
within 101 on average. Moreover, its polynomial run-
ning time is reflected in very small CPU times
on these benchmark instances. When compared to
(meta-)heuristic algorithms, solution quality suffers
only by a single-digit percentage on average, whereas
CPU times are improved by several magnitudes.
Moreover, recall that this improvement in running
time comes in addition to the advantage of having
a guarantee on solution quality across all possible
instances, including malicious examples where (meta-
)heuristics might perform very poorly. In light of its
extremely fast running time, our algorithm can also
be used to compute feasible start solutions for other
search heuristics.

6.2. Larger, Randomly Generated Instances
The extremely fast running time of our algorithm
on benchmark instances, which are all of moderate
size, suggests that our algorithm is suitable for larger
instances as well. To the best of our knowledge, no
instances of CLR that are significantly larger than
those in the benchmark set have been solved in the
literature; hence, we generated a random test set from
three input parameters: size, facility opening cost, and
vehicle capacity.
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Table 2 Gaps to Best Known Solution (bks) and CPU Times for Various Algorithms on Benchmark Instances

Approx. Approx. + TSP GRASP LRGTS TS/BCP

Instance Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU

111112 00207 0000 00079 0000 00039 32040 00015 3030 00060 6001
111122 00235 0000 00117 0000 00054 40070 00016 6050 00057 5071
111212 00133 0000 00043 0000 00019 27060 00011 4020 00034 3036
111222 00342 0000 00246 0000 00035 36020 00008 7040 00055 5052
112112 00164 0000 00076 0000 00028 27070 00017 6090 00054 5045
112122 00133 0000 00095 0001 00019 34030 00012 6080 00027 2066
112212 00086 0000 00041 0000 00025 22050 00024 5020 00039 3092
112222 00119 0000 00070 0000 00027 37030 00020 5090 00017 1068
113112 00183 0000 00090 0000 00028 21050 00024 4030 00063 6034
113122 00201 0000 00131 0000 00021 36000 00008 6030 00023 2026
113212 00140 0000 00082 0000 00011 20030 00012 4000 00020 2004
113222 00166 0000 00126 0000 00004 38040 00007 4090 00023 2005
131112 00253 0001 00142 0001 00075 113000 00042 12050 00072 7019
131122 00230 0001 00110 0001 00026 161040 00018 18050 00028 2077
131212 00153 0000 00067 0001 00027 100000 00015 11010 00021 2006
131222 00206 0001 00102 0001 00026 132040 00006 15080 00025 2053
132112 00163 0001 00081 0001 00041 117070 00000 22000 00074 7043
132122 00301 0001 00230 0002 00009 166010 00034 28000 00024 2039
132212 00101 0001 00050 0000 00028 106070 00004 14060 00020 2004
132222 00170 0000 00123 0001 00010 142040 00005 13070 00018 1075
133112 00155 0001 00098 0000 00022 92080 00017 17090 00037 3068
133122 00127 0001 00075 0001 00017 128040 00016 18050 00062 6017
133212 00128 0000 00068 0001 00020 88050 00014 14050 00054 5043
133222 00081 0000 00029 0001 00068 134090 00008 14030 00026 2055
121112 00217 0001 00145 0001 00055 308000 00016 32060 00053 4028
121122 00139 0001 00050 0002 00047 410000 00010 39060 00012 1020
121212 00191 0001 00105 0002 00017 311040 00012 32080 00024 2039
121222 00225 0002 00122 0002 00042 418090 00004 40020 00047 4026
122112 00145 0002 00088 0002 00017 338000 00009 47020 00027 2070
122122 00179 0002 00125 0002 00057 370000 00017 59030 00045 4053
122212 00107 0001 00050 0001 00020 242070 00014 36070 00056 5060
122222 00119 0001 00049 0000 00010 308050 00005 38070 00026 2060
123112 00170 0001 00081 0001 00036 282080 00005 41060 00042 4020
123122 00126 0001 00050 0002 00068 399020 00015 51080 00023 2031
123212 00183 0002 00146 0002 00010 199000 00009 34000 00060 6000
123222 00182 0001 00134 0001 00011 296030 00005 43020 00015 1052
Chr69-100 × 10∗ 00283 0000 00108 0000 00022 25050 00000 28020 00000 13107407
Chr69-50 × 5∗ 00220 0000 00079 0000 00059 2030 00037 2040 00000 11209
Chr69-75 × 10∗ 00177 0000 00104 0000 00000 9080 00002 10010 00000 3141305
Gas67-22 × 5∗ 00244 0000 00021 0000 00000 0020 00004 0020 00000 600
Gas67-29 × 5∗ 00279 0000 00165 0000 00006 0040 00000 0040 00000 17802
Gas67-32 × 5∗ 00245 0000 00179 0000 00017 0060 00040 0060 00000 6304
Gas67-32 × 5-2∗ 00205 0000 00123 0000 00000 0050 00001 0050 00000 11709
Gas67-36 × 5∗ 00448 0000 00094 0000 00000 0080 00035 0070 00000 209
Min92-27 × 5∗ 00181 0000 00115 0000 00000 0040 00001 0030 00000 4700

� 00188 0001 00100 0001 00026 128054 00013 17096 00038 3074
00000 11890069

Notes. Results for algorithm TS are only available for the first 36 instances, and those for BCP only for the last nine; hence they share a column. The last row
contains average values, with those for TS (first 36 instances) and BCP (last nine) one above the other.

∗Signifies proven optimality of bks.

Instances were generated on three base networks
of different sizes: M (11000 clients, 100 facilities);
L 4510001500); and XL (101000111000). Facility open-
ing costs were drawn uniformly at random from three
different ranges: 6031007, 610032007, and 620035007.
Vehicle capacities were set to either 9, 100, or 11000,
and client demands were drawn uniformly at random

from 603107 in all cases. Finally, x- and y-coordinates
for clients and facilities were drawn uniformly at ran-
dom from 6031007, and Euclidean distances d4i1 j5 2=√
4xj − xi5

2 + 4yj − yi5
2 are used in all instances. Our

approach of generating the random instances is simi-
lar to the approach of Tuzun and Burke (1999), except
that we did not use clustering. The experimental
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design, using the same base network with different
parameters, allows us to compare the effects of these
parameters on solution structure, performance of the
algorithm, and quality of the lower bounds derived
from MST and UFL subproblems, respectively.

All possible combinations of the three input param-
eters yield 27 different instances, which we name by
their size, indexed with their choice of facility open-
ing cost and vehicle capacity. For example, M212 is an
instance with 11000 clients, 100 facilities, facility open-
ing costs in 610032007, and vehicle capacity 100.

Key properties of the solutions computed by our
algorithm, again with and without LKH, together
with CPU times are depicted in Table 3. The column
“lower bound” denotes the better of the two lower
bounds arising from the UFL and MST instances as
described in Lemmas 1 and 2. Although the minimum
spanning tree computed within the algorithm is opti-
mal and can thus be directly used as lower bound,
deriving a reasonable UFL lower bound requires more
care because the UFL solutions used in the algo-
rithm are only approximations: For smaller instances
(size M), we computed the optimal solution value
of the corresponding UFL instances using the mixed

Table 3 Best Known Lower Bounds, Solution Properties, Costs, Gaps, and CPU Times of the Approximation Algorithm With and Without TSP
Post-Optimization for Random Instances

Approx. Approx. + TSP

Name Lower bound #open fac. Fac. cost #tours Cost Gap CPU Cost Gap CPU

M111 8180008O 33 77904 757 13156304 00541 0047 13147809 00532 0055
M112 41124905O 13 82 58 4111106 00961 0095 31499005 00669 1000
M113 2109603T 8 3108 10 3134306 00595 1059 2147809 00183 1065
M211 12116606O 18 2115709 756 18108602 00487 0053 17,997 00479 0062
M212 2128808O 5 52802 55 5109809 10228 0092 41468074 00952 0098
M213 2115106T 1 20502 6 3152002 00636 1062 21620084 00218 1067
M311 15143202O 10 2137003 756 23100808 00491 0068 22192608 00486 0076
M312 2193807O 3 86901 55 6,012 10046 1027 51345092 00819 1032
M313 2120304T 1 41403 6 3165608 0066 0083 21779025 00261 0088
L111 17,502D 128 2142604 31695 32,473 00855 23039 32132509 00847 35090
L112 4,607T 47 33703 272 9143305 10048 50084 8110601 0076 59029
L113 4,607T 16 4201 31 7134407 00594 120012 51463071 00186 121095
L211 29151906D 50 6100005 31694 50138006 00707 28089 50122907 00702 41035
L212 5194605D 10 1116308 271 13143505 10259 65079 12105905 10028 73081
L213 4165904T 2 306 29 8,477 00819 162099 61624078 00422 165008
L311 38172803D 31 7129304 31694 64105809 00654 3803 63190501 0065 50094
L312 7151509D 6 1,473 271 15169409 10088 8908 14137204 00912 97081
L313 4170904T 1 40903 29 8183503 00876 210071 61966054 00479 213044
XL111 25144907D 229 3139408 71480 48187905 00921 136048 48167701 00913 214023
XL112 6149406T 78 40501 554 13175203 10117 314081 11,872 00828 369047
XL113 6149406T 33 5207 69 10,400 00601 741008 71754066 00194 749091
XL211 46160108D 82 9126409 71473 77179603 00669 165057 77158006 00665 243040
XL212 9125307D 17 1175207 547 20113307 10176 383013 18115901 00962 434058
XL213 6155003T 4 50708 57 12101802 00835 879048 9129601 00419 886083
XL311 60146103D 48 10159301 71473 101,676 00682 228014 101,454 00678 307012
XL312 11183801D 11 2125502 547 23130405 00969 518015 21134105 00803 570046
XL313 6160005T 2 61002 57 13109101 00983 11314086 10138909 00574 11322069

� 141328043 32.85 21063094 11433041 221651035 00833 203001 21,562 00616 221003

Note. T: MST, O: optimal UFL solution, D: dual UFL solution.

integer programming solver CPLEX 12.1 (IBM Corp.
2009). For the instances of size L and XL, where using
a MIP solver was not possible, we derived a lower
bound by constructing a dual solution from the client
bids occuring in the UFL greedy algorithm by Jain
et al. (2003).

CPU time for the largest instances is at most about
20 minutes. On average, using LKH to optimize tours
a posteriori reduces total cost by about 5% while
increasing CPU time by roughly 10%. Naturally, the
effect of using LKH on both solution quality and CPU
time is more significant when vehicle capacity is large
(i.e., tours are long). Regarding the lower bounds,
we observe that the MST yields stronger bounds for
larger vehicle capacities, whereas the UFL bound is
stronger when vehicle capacities are small. On aver-
age, our algorithm shows a gap of 6106% to the corre-
sponding lower bounds when LKH post-optimization
is enabled.

Although we do not expect the lower bounds to
be very close to the optimum solution values, we do
not have any other primal solutions to compare with
our results on instances of similar size. However, we
encourage the authors of other algorithms for CLR to

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Harks, König, and Matuschke: Approximation Algorithms for CLR
Transportation Science 47(1), pp. 3–22, © 2013 INFORMS 21

perform experiments on our random test set, which
is available for download at http://www.coga.tu-
berlin.de/clrlib, and compare their results to ours.

7. Summary and Outlook
Approximation algorithms combine efficient running
times with provable a priori guarantees on solu-
tion quality. We applied this concept to several ver-
sions of capacitated location routing problems, which
extend classical vehicle routing problems by depot
location decisions. Variants of our algorithms also
yield improved approximation guarantees for multi-
depot capacitated vehicle routing.

We constructed a 4038-approximation algorithm
for capacitated location routing with arbitrary client
demands, the first constant-factor approximation
known for this problem. For the case of multidepot
capacitated vehicle routing, our algorithm improves
the best known approximation ratio from 5 to 4.
We then extended our algorithms to practically rel-
evant generalizations of these problems, namely a
prize-collecting version with penalties for non-served
clients and a group version, where one client from
each group needs to be chosen. In all three cases, a
variant where cross-docking is allowed leads to better
approximation factors. All algorithms in our frame-
work are based on computing an uncapacitated solu-
tion via a minimum spanning tree or Steiner tree and
rerouting excess demand according to the solution of
a scaled facility location problem (or along shortest
paths for multidepot capacitated vehicle routing).

Finally, we demonstrated in a computational study
that our algorithm for CLR is also of practical rele-
vance. Our computational experiments revealed that
the actual solution quality achieved by our algo-
rithm is much closer to optimality than suggested
by the theoretical bounds. On a benchmark set of
instances from the literature, our algorithm for CLR
computes solutions with cost within a factor of 1.1–1.2
of best known solutions on average. Moreover, we
demonstrated that our algorithm is extremely fast,
running in negligible time on benchmark instances.
Thus, it might be a valuable tool for solving large-
scale problems.

A further investigation of the algorithms in this
paper would be of practical as well as theoretical
interest: Given its fast running time, using its solu-
tion as a starting point in local search frameworks
might lead to improved results of those heuristics
without a significant increase in running time. Further
experiments could be conducted on extended location
routing models, e.g., with capacities on facilities or
heterogeneous vehicle fleets. Although the theoretical
approximation guarantee might be lost in these cases,
the algorithm could be adapted to still be an efficient
heuristic for those problems.

On the theoretical side, it might be possible to
sharpen our analysis and prove stronger theoretical
approximation guarantees. Moreover, our paper does
not address the issue of lower bounds on the possi-
ble approximation factor for basic capacitated location
routing. It is easy to see that it cannot be approxi-
mated better than by a factor of 105 (unless P = NP ),
which is the best known lower bound for approxi-
mating a single-depot vehicle routing problem with
uniform vehicle capacities (Golden and Wong 1981).
However, an analysis that takes into account both the
location and routing aspects of the problem might
lead to stronger inapproximability results.

Moreover, our algorithms strongly rely on the
technique of tree-to-tour-conversion, thereby incur-
ring an additional factor of 2 in their approxima-
tion ratios. It would be interesting to find out if a
more tour-specific approach, e.g., the tour partition-
ing techniques widely used for vehicle routing prob-
lems (Li and Simchi-Levi 1990), could lead to better
approximation factors.

The cross-docking model considered in this work
assumes that the cost of actual cross-docking
operations is negligible and the operations can be per-
formed at arbitrary client nodes. Deriving approxi-
mation algorithms for the case where cross-docking
operations incur cost and are restricted to certain
cross-docking facilities is an open problem. In §5,
we point out that the possible improvement due to
cross-docking is bounded by a factor of at most 4038.
We suspect the actual bound to be much smaller and
leave its determination as a further open question for
future research.
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CORRECTION

In this article, “Approximation Algorithms for Capacitated Location Routing” by Tobias Harks, Felix G.
König, and Jannik Matuschke (first published in Articles in Advance, June 22, 2012, Transportation Science,
DOI:10.1287/trsc.1120.0423), errors in the proof labeling have been corrected. A misprint in the short running
title was also corrected.
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